ABSTRACT

Plectranthus amboinicus (Lour) Spreng belongs to family Lamiaceae, known as country borage in English. It is large succulent aromatic perennial herb, shrubby below, hispidly villous or tomentose. It is found throughout India, Ceylon and Moluccas. The leaves of the plant are bitter, acrid and were being widely used traditionally for various purposes. The plant has been worked out very well and isolated several chemical constituents and had shown various biological properties. This review is an effort to compile all the information reported on its phytochemical and pharmacological activities. The present review is an attempt to generate interest among the masses regarding its immense potential in preventing and treating the several diseases.

Keywords: Plectranthus amboinicus, review, phytochemical, biological properties

INTRODUCTION

Allopathic treatment may either be permanent or temporary depending on the patient’s physical damage. Once the patient’s health has improved through nutritional methods, sometimes they can be weaned from the synthetic drugs. Evaluation of Indian traditional medicine is possible through the proper exploitation and exploration of wide bio-diversity and great ancient treatises of traditional medicine with the light of modern tools and techniques. Numerous medicinal plants and their formulation are used for disorders in the Ethno medical practices as well as traditional system of medicines in India. Potent activity and long term administration is required for the treatment of chronic diseases. Further, these drugs have various and severe
adverse effect. Therefore naturally originated
agents with very little side effects are required to
substitute chemical therapeutics. One of such
herbal drug for chronic ailments is *Plectranthus*
amboinicus Lour. which is widely used
traditionally.

Synonyms: *Coleus amboinicus* Lour.

Coleus aromaticus Benth.³

Family: Lamiaceae

Vernacular Names⁴,⁵

- English: Country borage, Indian borage
- Hindi: Patta ajavain, Patharchur
- Tamil: Karpuravalli
- Kannada: Karpurahalli
- Malayalam: Kannikkurkka, Panikkurkka
- Sanskrit: Pashanabhedi, Asmantaka, Himsagar
- Telugu: Sugandhavalkam
- Bengali: Patharkuchi, Amlakuchi, Patarchur
- Gujarati: Ovapana
- Marathi: Pan-Ova, Pathurchur
- Philippines: Oregano
- Singalese: Kapprawalliya
- Tagalog: Suganda

Distribution

This grassy plant is found or cultivated throughout India, Ceylon and Moluccas⁵. Wild in Rajputana, also cultivated in gardens³.

MACROSCOPICAL FEATURES

Description⁴,⁶

A large succulent aromatic perennial herb,
shrubby below, hispidly villous or tomentose.

Fig. 1
Fig 1 Twig and flowers of *Plectranthus amboinicus* Lour.

Stem

Stems are fleshy with 30-90 cm height.

Leaves

Leaves are 2.5-5 cm long, simple, opposite, petaled, broadly ovate or cordate, crenate, fleshy and very aromatic. Fig. 2

Flowers

Flowers are shortly pedicelled, 3 mm long, pale purplish in dense whorls at distant intervals in a long slender raceme. Upper calyx are lip ovate, acute, membranous, lower acuminate. Corolla are pale purplish, tube short, throat inflated, lips short. Stamens are shortly exserted.

Fruits

Fruits are orbicular or ovoid nutlets. Flowers and fruits during August-November.

Parts Used

Leaves.

MEDICINAL USES
The leaves are bitter, acrid, thermogenic, aromatic, anodyne, appetizing, digestive, carminative, stomachic, anthelmintic, constipating, deodorant, expectorant, lithontriptic, diuretic and liver tonic. They are useful in cephalalgia, otalgia, anorexia, dyspepsia, flatulence, colic, diarrhoea and cholera especially in children, halitosis, convulsions, epilepsy, cough, chronic asthma, hiccough, bochitis, renal and vesical calculi, strangury, hepatopathy, malarial fever, antispasmodic and cathartic. Juice of leaves mixed with sugar acts as a powerful aromatic carminative, given in colic and dyspepsia. Crushed leaves are used as a local application to the head in headache and to relieve the pain and irritation caused by stings of centipedes. Expressed juice is applied round the orbit to relieve the pain in conjunctivitis. In Malaysia, bruised leaves are applied to burns and their poultice on centipede and scorpion-bites. The leaf juice heals chapped lips and in java it is used to treat cracks at the corners of the mouth.

CHEMICAL CONSTITUENTS

Butylaniside, β-caryophyllene, carvacrol, 1-8 cineole, p-cymene, ethylsalicylate, eugenol, limonene, myrcene, α and β-pinenes, β-selenene, γ-terpinene, terpinen-4-ol, thymol, verbenone (essential oil), apigenin, chrysoeriol, 5,4-dihydroxy-6,7-dimethoxy-flavone (cirsimaritin), eriodictyol, 6-methoxy-genkawanin, luteolin, quercetin, salvigenin, taxifolin, oxaloacetic acid, crategolic, euscaphic, 2α-3α-dihydro-olean-12-en-28-oic, pomolic, oleanolic, tormentic, 2α,3α,19α,23-tetrahydroxyurs-12-en-28-oic, ursolic acids, β-sitosterol-β-D-glucoside isolated from the leaves.
morphological studies on the leaves of *Plectranthus amboinicus*.

PHYTOCHEMISTRY

Brieskorn CH and Reidel W (1977) isolated eight triterpenic acids from the leaves of the South-American lamiaceae *Coleus amboinicus* Loureiro. 2,3-Dihydroxylean-12-en-28-oic acid, 2,3,19-trihydroxyurs-12-en-28-oic acid and 2,3,19,23-tetrahydroxyurs-12-en-28-oic acid were found first time in lamiaceae.

Baslas RK and Kumar P (1981) reported that the oil obtained by steam distillation (0.04-0.05%) has been found to contain terpinolene (3.75%), α-pinene (3.20%), β-pinene (2.50%), β-caryophyllene (4.20%), methyl eugenol (2.10%), thymol (41.3%), 1,8-cineole (5.45%), eugenol (4.40%), carvacrol (13.25%) and β-phellandrene (1.90%).

Bos R and Hendriks FH (1983) studied the composition of essential oil in the leaves of *Coleus aromaticus* Benthum and their importance as a component of species antiapthosae. Malik MS *et al.*, (1985) studied on essential oil of the *Coleus aromaticus* plant.

Haque IU (1988) detected fifteen components in the essential oil (0.1%) obtained from dry steam distillation of the fresh stalk and leaves of *Coleus aromaticus*.

PHARMACOGNOSY

Brindha P. *et al.*, (1991) presented the pharmacognostic, exomorphology, histomorphology and physico-chemical evaluation of the leaf and stem of *Coleus aromaticus*. Kaliappan ND and Viswanathan PK *et al.*, (2008) carried out the micro
Coleus aromaticus. Thymol (79.6%) was shown to be the principal component of the oil15. Pino J et al., (1989) investigated the essential oil of Coleus amboinicus Lour. by means of LSC, GLC and GC-MS and 20 components were identified, including 13 terpene hydrocarbons and 7 oxygenated compounds. The oils contained about 64% carvacrol16. Pino JA et al., (1996) isolated volatile compounds from Coleus aromaticus leaf by steam distillation, hexane extraction and super critical CO\textsubscript{2} extraction and identified 26 components by GC/MS17. Mallavarapu GR et al., (1999) analyzed the essential oils of Coleus aromaticus distilled in different seasons by capillary GC and GC/MS. The oils were found to contain carvacrol, p-cymene and gamma-terpinene as major constituents. The oil produced in September was found to contain higher contents of carvacrol and beta-caryophyllene and oxygenated constituents than the oil produced in May18. Ragasa CY et al., (1999) reported that the air dried leaves of Coleus amboinicus afforded three flavones: salvigenin, crisimaritin and chrysoeriol by silica gel chromatography. There structures were elucidated by extensive 1D and 2D NMR and UV spectroscopy. Antimicrobial assay on salvigenin and crisimaritin showed low activities against the microorganisms tested19. Singh G et al., (2002) investigated the leaf essential oil of Coleus aromaticus by GC and GC-MS techniques which indicated the presence of six components, accounting for 97 percent of the total oil20. Kumaran A and Karunakaran RJ (2007) used an activity directed fractionation and purification process to identify the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging components of Coleus aromaticus Benth. Rosmarinic acid was found as a major component and principally responsible for the radical scavenging activity of Coleus aromaticus21.

PHARMACOLOGY

Vera R et al., (1992) investigated essential oils of Plectranthus amboinicus by GLS & MS. Juice of its leaves is used for curing wounds and an infusion is said to possess anti-influenza properties22. Baskar R et al., (1992) administered Coleus aromaticus leaf juice (at the rate of 1ml/rat/day) for 10-30 days in experimental urolithiatic rats. Reduction in the deposition of Ca and oxalate in the kidney tissue has been reported23. Buzenego MT and Perez-
saad H (1999) reported antiepileptic effect of *Plectranthus amboinicus* (Lour) Spreng\(^2\). Annapurani S *et al.* (1999) exhibited significant antitumour and antimutagenic activities of *Coleus aromaticus, Ocimum sanctum* and *Aegle marmelos* and estimated polyphenol content in each\(^2\). Santosa CM (2002) reported that *Coleus amboinicus* leaves exhibited increasing milk secretion of lactating animals and seemed to be superior to other treatment groups on milk secretion and also containing iron and potassium composition\(^26\). Shyama Prasad S *et al.* (2002) investigated the anticlastogenic potency of the ethanolic extract of *Coleus aromaticus* and the results indicate the protective effect against cyclophosphamide and mitomycin-c induced cytogenetic damage\(^27\). Perez SH *et al.*, (2003) reported neuropharmacological profile of *Plectranthus amboinicus* (Lour) Spreng\(^28\). Rao BS *et al.*, (2006) elucidated in vitro free radical scavenging potential and inhibition of lipid peroxidation by *Coleus aromaticus* hydrochloric extract (CAE). Anti-clastogenic and radioprotective potential of CAE were studied using micronucleus assay after irradiating Chinese hamster fibroblast (V79) cells\(^29\). Kumaran A and Karunakaran RJ (2006) investigated the antioxidant potency of freeze-dried aqueous extract of *Coleus aromaticus*, employing various established in vitro models\(^30\). Kumar A *et al.*, (2007) studied mast cell stabilization property of aqueous and hydrochloric leaf extract of *Coleus aromaticus* in rat peritoneal mast cells\(^31\). Chang JM *et al.*, (2007) investigated therapeutic efficacy of *Plectranthus amboinicus* in treating rheumatoid arthritis using collagen-induced arthritis in animal model\(^32\). Hole RC (2008) studied that aqueous extracts of fresh leaves of *Coleus amboinicus* Lour. parent, as well as tissue culture-raised plants showed a dose dependent positive inotropic effect on isolated frog heart\(^33\). Periyanayagam K *et al.*, (2008) has performed in vivo study of aqueous extract of leaves of *Plectranthus amboinicus* on *Plasmodium berghei* yoelii\(^34\). Gurgel AP *et al.*, (2009) evaluated the anti-inflammatory and antitumor activities of the hydroalcoholic extract from leaves of *Plectranthus amboinicus* (Lour.) Spreng\(^35\). Patel R *et al.*, (2010) evaluated the diuretic properties of ethanolic and aqueous extracts of leaves of *Plectranthus amboinicus* in male albino rats\(^36\). Palani S *et al.*, (2010) investigated the nephroprotective, diuretic and
antioxidant activities of the ethanol extract of *Plectranthus amboinicus* at two dose 250 and 500 mg/kg bw on APAP-induced toxicity in rats\(^{37}\).

MICROBIOLOGY

Rao A *et al.*, (1991) reported that oil isolated from the leaves of *Coleus amboinicus* exhibited varying degree of antimicrobial activity against a number of pathogenic and non-pathogenic fungi and bacteria\(^{38}\). Prudent D *et al.*, (1995) analyzed the essential oil of *Coleus aromaticus* for its bacteriostatic and fungistatic properties\(^{39}\). Ruiz AR *et al.*, (1996) carried out a screening for genotoxic activity in aqueous or alcoholic extracts from 13 medicinal plants used as folk medicine in Cuba along with *Plectranthus amboinicus*\(^{40}\). Deena MJ *et al.*, (2002) reported antimicrobial screening of essential oils of *Coleus aromaticus* and *Coleus zeyla*\(^{41}\). Perumal G *et al.*, (2004) tested ethanolic extract of nine medicinal plants parts along with *Coleus aromaticus* (leaves) for antifungal activity against *Aspergillus flavus*, *A. terreus* and Mucor species. The extract in different concentrations exhibited good fungicidal activity\(^{42}\). Uawonggul N *et al.*, (2006) screened the aqueous extracts of 64 plant species along with *Plectranthus amboinicus* for their activity against fibroblast cell lysis after *Heterometrus laoticus* scorpion venom treatment\(^{43}\). Murthy PS *et al.*, (2009) investigated *Plectranthus amboinicus* for antifungal activity through agar well diffusion assay\(^{44}\).

TOXICITY STUDIES

Parra AL *et al.*, (2001) determined the median lethal concentrations (LD50 value) of 20 plant extracts along with *Plectranthus amboinicus* using *Artemia salina* (tested at three concentrations: 10, 100 and 1000 μg/ml for each extract). Good correlation was found between in vivo and in vitro test (\(r = 0.85, P<0.05\))^\(^{45}\). Jose MA *et al.*, (2005) have done the LD50 using OECD guideline for testing of chemicals revised draft guideline 423. The one tenth of the LD50 500mg/kg was chosen as a dose for the further study. The urine and histopathological results clearly revealed the antilithiotic activity of *Plectranthus amboinicus* particularly of calcium oxalate origin\(^{46}\).

MISCELLANEOUS STUDIES
Baslas RK and Kumar P (1981) reviewed the chemical composition, medicinal uses and biological activities of *Coleus aquaticus*, *C. amboinicus*, *C. barbatus*, *C. blumei*, *C. forskohlii*, and *C. somaliensis*. Kuebel KR and Tucker AO (1988) discussed identification, cultivation, chemistry and uses of nine Vietnamese herbs, hitherto rare or unknown in the United States viz *Plectranthus amboinicus*. Morton JF (1992) reviewed origin, distribution, medicinal uses and phytochemical work of *Coleus amboinicus*. Morallo RB et al., (1992) evaluated the biological activity of 18 medicinal plants along with *Coleus amboinicus*. It was found that *Coleus amboinicus* did not exhibit pronounced insecticidal activity. Kathiresan RM (2000) reviewed the allelopathic potential of native plants for use as an alternative bio-control tactic. Dried powder of the leaves of Omavalli *Coleus amboinicus* L. at 40g/l as a water suspension killed water hyacinth with 24 h reducing the fresh weight by 80.72% and dry weight by 75.63% within one week. Gupta S et al., (2004) analysed nutrient and antinutrient content of 13 locally available underutilized green leafy vegetables along with *Coleus aromaticus* Benth.

CONCLUSION

Considering the easy availability of *Plectranthus amboinicus* in our country and leaves of the plant possess a wide range of biological properties, it seems that still there is a scope for scientific studies to fully exploit its medicinal properties to support traditional claims as well as, exploring some new and promising leads. The pharmacological studies so far have mostly been performed for volatile principle of plant. In future study, the isolated principle of extracts of *Plectranthus amboinicus* needs to be evaluated in scientific manner. It could be concluded that *P. amboinicus* is a rich source of compounds, interesting chemical structures and various biological active products.

References:

37. Palani S, Raja S, Naresh R and Kumar BS. Evaluation of nephroprotective, diuretic and antioxidant activities of *Plectranthus amboinicus* on acetaminophen-induced

